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The frequency scaling exponent of low-frequency excitations in microscopically small glasses,
which do not allow for the existence of waves (phonons), has been in the focus of the recent literature.
The density of states g(ω) of these modes obeys an ωs scaling, where the exponent s, ranging between
2 and 5, depends on the quenching protocol. The orgin of these findings remains controversal.

Here we show, using heterogeneous-elasticity theory, that in a marginally-stable glass sample g(ω)
follows a Debye-like scaling (s = 2), and the associated excitations (type-I) are of random-matrix
type. Further, using a generalisation of the theory, we demonstrate that in more stable samples,
other, (type-II) excitations prevail, which are non-irrotational oscillations, associated with local
frozen-in stresses. The corresponding frequency scaling exponent s is governed by the statistics of
small values of the stresses and, therefore, depends on the details of the interaction potential.

INTRODUCTION

Understanding the nature of vibrational states in
glasses is crucial for gaining insight into their mechan-
ical and thermal properties [1]. Correspondingly a large
amount of experimental [1–10] theoretical [11–22] and
simulational work [23–30] has been undergone in the last
∼ 50 years. A paradigm for the anomalous vibrational
features of glasses is the so-called boson peak (BP), which
is an enhancement of the vibrational density of states
(DOS) g(ω) over Debye’s g(ω) ∼ ω2 law, where ω = 2πν
is the angular frequency, and ν is the frequency. Such
an enhancement is observed in experimental studies of
macroscopically large samples. The nature of the boson-
peak anomaly has been debated controversely [31, 32]
(see [33] for a listing and a discussion of various pro-
posed models for the the boson peak), but – as we feel
– in the light of heterogeneous-elasticity theory (HET)
[19, 20, 34] it became clear that the boson peak marks
a cross-over of the vibrational state’s nature from occa-
sionally scattered plane waves (“phonons”) at low fre-
quencies, as considered by Debye [35], to random-matrix
type states in the BP region, as demonstrated first by
Schirmacher et al. [14]. To avoid confusion, from now
on we will call these random-matrix type states ’type-I
non-phononic’ states.

On the other hand, in simulations of samples of re-
duced size, a different type of low-frequency modes was
detected. We call these modes “type-II” non-phononic
modes.

As early as 1991 Laird and Schober [23] found, in a sim-
ulation of a glass made up of 500 particles, low-frequency
states that appeared to be localized, as estimated from
the participation ratio. They coined the term “quasi-
localized” excitations, because in a larger system these
excitations must hybridize with the waves, like local oscil-
latory defects in crystals [36]. Such non-phononic modes,
which become visible at low frequency in small samples
have more recently attracted a lot of attention [37–42].
Many of the reported type-II non-phononic excitations
have been found to exhibit a DOS g(ω) ∼ ωs scaling
with s = 4. Recently, in a detailed MD study of low-
frequency non-phononic excitations, a continuous change
of the DOS exponent from s = 4 to the Debye-like value
s = 2 has been reported, depending on the quenching
protocol [43–45]. In one approach [43], a fraction of the
particles was fixed in space during the quenching process
(pinned particles). With increasing fraction of pinned
particles s was found to increase continuously from 2 to
4 (and even above). In another approach [44, 45], the
glass at T=0 was produced by quenching from a well
equilibrated liquid temperature T ∗ (the “parental tem-
perature”). Upon increasing T ∗ from the (numerical)
dynamical arrest temperature Td, the exponent of the
DOS in the resulting glass was reported to decrease con-
tinuously from 4 to 2, up to T ∗ roughly twice the value of
Td, and to remain Debye-like for higher parental temper-
atures. It is worth to emphasise that the Debye-like DOS
with s = 2 found in [44, 45] has no relation with wave-like
excitations, which, in the simulated small systems, can

Nature Communications in print



2

only exist at high enough frequencies.

As pointed out by Paoluzzi et al. [45], the observed
s = 2 may be related to the vicinity of a marginal sta-
bility transition [22, 46, 47]. At this transition, unsta-
ble modes would appear if the glass temperature would
be slightly increased. In fact, it has been demonstrated
within mean-field spin glass theory [22, 48, 49] that in
the case of marginal stability the DOS obeys an ω2

law, which is due to a Gaussian-Orthogonal Ensemble
(GOE) type or Marchenko-Pastur-type random-matrix
statistics (and not due to waves). In models with spa-
tially fluctuating force constants [14, 16, 18, 50] and in
the HET model (spatially fluctuating elastic constants)
[19, 20, 28, 51], marginal stability appears if the amount
of negative force or elastic constants approaches a criti-
cal threshold value. If this amount is increased beyond
this threshold, again, unstable modes appear in the spec-
trum (with negative eigenvalues). Such unstable spectra,
calculated with HET theory, in fact, have been recently
used to model the instantaneous spectrum of liquids [52].

Given the observed scenario, one can argue that
quenching from a high parental temperature T ∗ the sys-
tem may reach a situation of marginal stability, in which
the type-I non-phononic excitations extend to zero fre-
quency and s takes the value of 2, as predicted by mean
field theory and HET for the case of marginal stability.
Quenching from a lower T ∗ might enable the liquid to ac-
comodate in a more comfortable situation, in which the
type-I modes are confined to the region above a finite fre-
quency, which would be the BP frequency in macroscopi-
cally large systems. In small samples, which do not allow
for the existence of waves at small frequency, there is now
room for the appearance of type-II non-phononic modes.
Evaluating the spectrum of these type-II modes, and ex-
plaining their origin, is the main scope of the present
paper.

Before characterizing the type-II non-phononic exci-
tations, we show that HET predicts a DOS g(ω) ∼ ω2

at the marginally stable limit. We then derive a gen-
eralization of heterogeneous elasticity theory, by using
the continuum limit of the system’s Hessian. We un-
veil the nature of the type-II non-phononic excitations,
being irrotational, vortex-like displacement fields, associ-
ated with local, frozen-in stresses.

We find a direct relationship between the statistics of
the local stresses, governed by small values of the first
derivative of the interaction potential, and the DOS of
the type-II non-phononic modes. From this relationship
it follows that the value s = 4 often found in numerical
simulation [42] is the consequence of the cubic smooth-
ing (tapering) of the potential at its cutoff. We tested
this with numerical simulations, demonstrating that the
value of s is changed if the tapering function is altered.
A further consequence of the relation between the inter-
nal stresses and the spectrum of the type-II spectrum is
a scaling of s = 5 for potentials with a minimum, such

as the Lennard-Jones (LJ) potential. This scaling is ex-
pected to be generic for systems with both attractive and
repulsive interactions, and has been observed recently in
simulations of small disordered LJ systems [54, 55].

RESULTS

Type-I nonphononic modes and
Heterogeneous-Elasticity Theory (HET)

Heterogeneous-elasticity theory (a derivation from the
microscopic Hessian and a brief description of the main
steps of the theory are given in paragraph M1 of the
Methods section) is based on the assumption of a spa-
tially fluctuating local shear modulus G(r) = G0 +
∆G(r). Here G0 is the average of the shear modulus,
and the fluctuations ∆G(r) are supposed to be short-
range correlated (see Methods M1). The bulk modulus
K is supposed to be uniform. Such fluctuations can be
derived by a coarse-graining procedure (see [56, 57] and
Methods M1) from the Hessian matrix of the glass, i.e.
the second-order, harmonic Taylor coefficients of the to-
tal energy. The statistics of the fluctuations has been
verified in a simulation of a soft-sphere glass [28]. Us-
ing a mean-field theory derived by field-theoretical tech-
niques (self-consistent Born approximation, SCBA), the
mesoscopic spatially fluctuating part of the shear modu-
lus is transformed into a complex, frequency dependent
self energy Σ(z), which is the central quantity for the dis-
cussion of the influence of the disorder on the spectrum.
Here z = λ+ i0 ≡ ω2+ i0 is the spectral parameter. The
imaginary part Σ′′(λ) is proportional to Γ(ω)/ω, where
Γ(ω) is the sound attenuation coefficient. It is worth to
clarify once more that the HET is fully harmonic, the
system dynamics is described by the Hessian, no anhar-
monic terms are present and the low-frequency sound
attenuation is due to Rayleigh scattering of waves from
the disordered structure.
It has been shown in [20] that at low frequencies Σ′′(λ)

just adds to the spectrum ρ(λ) ≡ g(ω)/2ω (where λ = ω2

is understood) that in absence of the self energy would
be the Debye phonon spectrum. So by definition Σ′′(λ)
describes essentially the non-phononic part of the vibra-
tional spectrum.
The disorder-induced frequency dependence of Σ(z) is

governed by a dimensionless disorder parameter, γ, which
is proportional to the variance of the shear modulus fluc-
tuations:

γ = A
〈(∆G)2〉
G2

0

, (1)

where A is a dimensionless factor of order unity. Within
the mean-field HET, on changing γ, there is a sharp
crossover from stability (no negative eigenvalues λ) to
instability (presence of negative λ). Near the instability,
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which takes place at the critical value γc, the self energy
can be represented as [51]:

Σ(z) = Σc

{
1 +

2

γc

√
γc − γ

[
1 + zG(z)

]}
(2)

where Σc is Σ(z = 0) at criticality and G(z) is a linear
combination of the longitudinal and transverse Green’s
function (see [51] and Methods M1). Near λ = 0, G(z)
can be represented as

G(z) = G0 + iG1z
(d−2)/2 , (3)

where the imaginary part G′′ gives rise the to the Debye
spectrum:

ρε(λ=ω
2) =

1

2ω
gε(ω) ∼ G′′(λ)

∼ λ(d−2)/2 = ωd−2 , (4)

which is the Debye law

gε(ω) ∼ ωd−1 . (5)

The subscript ε of the spectral function ρε(λ) and the
DOS gε(ω) indicates that these excitations correspond
to the HET theory, which is formulated in terms of the

strain tensor
↔
ε .

For small frequencies, Σ′′(λ) can be expanded with re-
spect to G′′(λ), leading to Rayleigh scattering Σ′′(λ) ∼
λd/2 [20, 21, 58]. For larger frequencies (λ > λc ∼ γc−γ)
the square-root in Eq. (2) produces its own imagi-
nary part, leading to a shoulder in the spectrum. This
shoulder appears as a maximum in the “reduced DOS”
g(ω)/ω2 and has been called ‘boson peak’ for historical
reasons [34]. So the boson peak is the crossover from a
Debye-spectrum to a random-matrix spectrum.
If we deal with finite-size samples (N particles),

phonons do not exist below the first resonance frequency
λo=ω

2
o ∼ N−2/d. In the absence of phonons, G0 has

still a finite value, but the low-frequency imaginary part
G′′(λ) is gone. Instead of a boson peak Eq. (2) pre-
dicts now a gap in the spectrum. Beyond the gap
edge (situated at λc = ω2

c ) Σ′′(λ) increases as
√
λ− λc.

This feature is shared by the mean-field theory of spin
glasses [22, 48, 49], associated with a Marchenko-Pastur
or GOE-type random-matrix spectrum. As stated above,
we call these disorder-dominated random-matrix modes
“type-I non-phononic excitations”. The eigenvalues of
these excitations obey random-matrix statistics of the
GOE type, as will be demonstrated below.
The type-I modes obviously dominate the low-

frequency spectrum of a marginally stable system with
λc ∼ γc − γ = 0, leading to ρε(λ) ∼ λ1/2 for λ → 0.
Because this law (which converts to a gε(ω) ∼ ω2 law)
is observed for quenching from a high parental tempera-
ture T ∗, we conjecture that for such high parental tem-
peratures a marginally stable system is produced by the

quenching procedure. This is rather plausible, because
the quenching procedure forces the final glass to have
only positive eigenvalues of the Hessian, but still keeps
the original liquid structure almost unaltered. Thus, the
obtained glass inherent structure lies “high” in the Po-
tential Energy Landscape (PEL). This is different in the
case of quenching from a low parental temperature, where
the initial liquid structure is equilibrated into a lower en-
ergy region of the PEL. The distinction between low and
high parental temperature, which is fundamental for un-
derstanding the properties of simulated glasses [43, 44],
is irrelevant in the case of real glasses: the quenching of
a real system is anyway appreciably slower (by many or-
ders of magnitude) than in the case of simulated glasses,
which means that during the quenching the system con-
tinuously equilibrates at lower and lower temperature.
Thus, except for the case of more complex disordered
materials like rubbers, gels, foams or granular materials
[59], an atomic or molecular glass is always somewhat
away from marginality.

Type-II non-phononic excitations and generalized
heterogeneous-elasticity theory (GHET)

We now turn to the type-II non-phononic excitations,
which we conjecture to appear in small samples (no low-
frequency phonons) in a more stable situation γc−γ ≫ 0
reached by quenching from low parental temperatures
(no type-I non-phononic excitations at low frequency).
In this case, almost all the numerical simulations, inde-
pendently of the specific interaction potentials, indicate
s = 4 [42], although for Lennard-Jones-type potentials
the situation is less clear [54, 55, 60–63]. To clarify the
origin and the nature of these type-II excitations, which
are predicted neither by the HET as described before, nor
by the standard mean-field spin glass theory (see, how-
ever, Bouchbinder et al. [64]), we have developed a gener-
alized version of the HET (let us call it Generalized HET,
i.e. GHET) where the displacement field is described by
two, instead than by a single, variables. These variables
are derived in terms of a modified continuum descrip-

tion, in which, in addition to the usual strain
↔
ε (r, t)

tensor field [56, 65], a second – non-irrotational – vector
field η(r, t) (vorticity) is necessary for a correct descrip-
tion of the dynamics. The two fields are coupled. While
the features of the strains are basically controlled by the
space dependence of the fluctuating elastic constants and
give rise to the type-I non-phononic modes (predicted by
standard HET), the vorticities are associated with spa-

tially fluctuating local stresses σ̃αβ
ij , which can be written

as (see Methods M2)

σαβ
ij =

1

ΩZ
rαijr

β
ijφ

′(rij)/rij =
1

ΩZ
êαij ê

β
ij rijφ

′(rij) (6)
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Here φ′(r) is the first derivative of the pair potential,
rij = ri − rj is the vector between the positions ri of a
pair of interacting particles, êij = rij/rij the correspond-
ing unit vector, rij = |rij | is the interparticle distance,
and ΩZ is a small volume around the center-of gravity
vector Rij =

1
2 [ri + rj ]

As shown in the Methods M2 section, we are able to
demonstrate that the dynamics of η(r, t) is similar to
that of a set of local oscillators, coupled to the strain field.
To the best of our knowledge, such vortex-like harmonic
vibrational excitations have not yet been considered.
It has been pointed out by Alexander [59, 66] that the

term in the potential energy, which involves the local
stresses, violates local rotation invariance. In fact, the
presence of frozen-in local stresses is the reason for the
existence of the type-II excitations. The local stresses
also provide the coupling between the type-II excitations
and the strain field.
In order to be more specific, but, as well, avoid the

introduction of too complicated technicalities, we use a
simplified version of GHET (Methods M2), where the
non-irrotational fields and the local stresses are treated
as scalars. The additional contribution to the self energy
is therefore (see Methods M2)

Σεη(z) ∼
(σαβ

ij
)2

−zζ+σαβ
ij

=

∫
dσP(σ)

σ2

−zζ + σ
. (7)

Here σ (without indices) denotes any component of the

stress tensor σαβ
ij , and ζ is a local moment-of-inertia den-

sity (see Methods M2). The overbar indicates the aver-
age over the local stresses, and P(σ) is their distribution
density. The local stresses may assume both positive and
negative values. Because the local stresses include those
due to the image particles of the periodic boundary con-
ditions, even for a strictly repulsive potential the diagonal
elements σαα may be positive and negative, see Methods
M2 and §17 of [59]. Only positive values of σ contribute
to the spectrum.
The corresponding contribution to the spectrum ρεη(λ)

is

ρεη(λ) ∼ Σ′′
εη(λ) ∼ σ2P(σ)

∣∣
σ=λζ

. (8)

Equation (8) represents one of the main results of the
present paper. Once the distribution of the local stresses
is known, we have an explicit expression for the contri-
bution of the type-II non-phononic modes to the DOS.
If, for example, P(σ) ∼ σ−1/2, from Eq. (8) one obtains
ρεη(λ) ∼ λ3/2, which leads to gεη(ω) ∼ ω4.

The distribution of the quantity σαβ
ij can be easily de-

rived (Methods M3) assuming an isotropic system, and
from the knowledge of the particles’ radial pair distribu-
tion function g

2
(r). Indeed, the stress distribution P(σ)

is related to the particle distance distribution via (Meth-
ods, M3)

P(σ) = rd−1g
2
(r)

∣∣∣dσ
dr

∣∣∣
−1

, (9)

where σ(r) = rφ′(r)/2Ωc.
How to rationalise the (almost) always observed s = 4?

In the numerical simulations, in order to speed up the cal-
culations and to optimally deal with the periodic bound-
ary conditions, a cut-off radius is introduced, i.e. the
interaction potentials is forced to be zero for distances
larger than a given interparticle distance rc. Further-
more, to guarantee the stability of the dynamics, and
the numerical conservation of the total energy, the in-
teraction potential is adjusted – using a proper tapering
function – in such a way to have at least the first two
derivatives continuous at rc. Besides details specific to
each simulation, the general form of the employed inter-
action potential is:

φDM(r) =
(
φ(r)− φ(rc)

)
Tm(r/rc) , (10)

where Tm(x) (m ≥ 2) is the tapering function, which is
zero for x ≥ 1, and whose first m derivatives are also
zero at x = 1. This guarantees that the first m deriva-
tives of the potential are continuous at r = rc. In other
words, the interaction potentials employed in the numer-
ical simulations always vanish at rc with a power law
(rc − r)(m+1). In most simulations the value m = 2 is
taken, which is the minimum value to guarantee that the
first two derivatives of the potential are continuous at
r = rc.
Because the DOS of the type-II non-phononic modes is

highly sensitive to the shape of the interaction potentials
close to the zeros of its first derivative, one can expect
that the tapering function has a large effect on the DOS.
Indeed (Methods M3), we find that, for any inverse-power
law potential, in presence of a tapering function one has

P(σ) ∼ σ−1+ 1

m , (11)

and consequently

ρεη(λ) ∼ λ1+
1

m

gεη(ω) ∼ ω3+ 2

m . (12)

Thus, in this case, the DOS of the type-II non-
phononic modes is controlled by the tapering function,
not by the details of the glass or of the interaction po-
tentials. The (almost) universally used m=2 gives for
the type-II low-frequency DOS the scaling gεη(ω) ∼ ω4,
i.e. the s = 4 scaling of the low-frequency DOS, which
has been observed in many recent small-sample simula-
tions [42].
In the case of a potential with a smooth, tapered cutoff,

the scale of the relevant values of σ is determined, among
other constants, by g

2
(rc). The latter quantity actually

depends on the thermodynamic state of the system and
on the quenching protocol, and this observation could
explain the findings that the intensity of the type-II non-
phononic mode spectrum does actually depend on the
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glass structure: see Fig. 2 in Ref. [67] and Fig. 10 in
Ref. [63].

A final consideration concerns the rather interesting
case of potentials with repulsive and attractive parts like
the frequently used Lennard-Jones (LJ) potential. In this
case the first derivative of the potential – relevant to the
stresses – vanishes linearly at the potential minimum.
Because g

2
(r) has a maximum there, the corresponding

small stresses will dominate over the tapering-induced
ones. At the potential minimum the stress goes to zero,
but the second derivative does not, which corresponds to
the m = 1 tapering, leading to a DOS gεη(ω) ∼ ω5. In
fact, such a scaling has been recently observed in simu-
lations of small LJ systems [54, 55]. These authors thus
conjectured that the s = 5 scaling is generic to LJ sys-
tems. In our view this is true and not only applies to
the LJ case but also to all potentials with attractive and
repulsive contributions.

In other simulations of small LJ systems the spectrum
does not clearly show a simple power law [61–63]. Here
we may assume that in addition to the small stresses
due to the potential minimum, contributions from the
smooth cutoff and/or type-I excitations may be involved,
depending on the quenching protocol. We finally mention
a simulation of a LJ system [60], which was large enough
to include Debye phonons. In this simulation the use of
a hard cutoff at rc (no tapering, “m = 0”) was compared
with m = 1 tapering. Interestingly only the in m = 1
case non-phononic modes on top of the Debye phonons
were observed.

Resulting scenario for the role of nonphononic
excitations in glasses

In a nutshell, the scenario described by the HET
and by the GHET, distinguishes i) between (iA)
large, macroscopic, glasses as those investigated ex-
perimentally, where the acoustic waves (phonons) ex-
tend to zero frequency, and (iB) small systems inves-
tigated numerically by molecular dynamics simula-
tions and similar techniques where the phonons ex-
ist only above a certain lowest resonance frequency;
ii) between (iiA) “quickly” quenched glasses, such as
those obtained by quenching from a high parental
temperature in numerical simulations (here the glass
is at criticality γ ≈ γc), and (iiB) “slowly” quenched
glasses, obtained by quenching from a well equi-
librated low parental temperature, or in the real
world, where the quenching rate is by far slower than
in any numerical simulations (here the glass is deeply
in the stable region γc ≫ γ). Within the present de-
scription (in terms of HET and GHET) in all these
cases a rather different scenario is realized.
In Fig.1 we summarize, in a cartoon-like fashion,
what is expected from our theory.

g

In panel a) of Fig. 1 the case of a macroscopically large
system far from criticality is considered. This is the
situation (almost) always found in real experiments.
In this figure the reduced DOS g(ω)/ω2 is sketched
(blue line), for a 3d system of infinite size (N=∞), far
from criticality (γ ≪ γc). The high-frequency side is
characterized by Anderson-localized modes (also called
“locons” following the notation of Allen et al. [68]). The
rest of the spectrum is populated by extended modes.
This remaining region is divided into (i) a low-frequency
regime, where acoustical, only occasionally scattered
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FIG. 1.
Panel a):

Sketch of the reduced DOS, g(ω)/ω2 (blue line), for a 3d sys-
tem of infinite size (N=∞), far from criticality (γ ≪ γc). The
high-frequency side is characterized by Anderson-like local-
ized modes (also called “Locons” following the Allen-Feldman
[68] notation), while the rest of the spectrum is populated by
extended modes. These are divided into a low-frequenncy re-
gion where phonon(-like) modes exist (briefly “Phonons”) and
an intermediate region where the modes are strongly scattered
by the disordered structure, and their dynamics is wave difu-
sion (“Diffuson”). According to the HET, this region starts
at the onset of the BP and the modes in this region are of
random-matrix type, i.e. similar to eigenstates of random
matrices.

Panel b):

Sketch of the reduced density of states, g(ω)/ω2, for a d=3
system of infinite size (N=∞), at different level of critical-
ity. The blue line represents, as in panel a) the case γ ≪ γc,
while the violet, magenta and red lines correspond to cases
with γ → γc. The BP onset shifts to lower and lower fre-
quency, eventually reaching zero frequency at γ=γc. In par-
allel, the random-matrix type modes, here named ”type I non-
phononic” modes, cover more and more the low-frequency re-
gion.

Panel c):

Sketch of the reduced density of states, g(ω)/ω2 (violet line),
for a d=3 system, with finite size (N), and far from criticality
(γ ≪ γc). Due to the finite size of the system, the boundary
conditions impose a lowest k value, and consequently a low-
est phonon frequency ωo. Below this value, no phonons are
allowed. If – as in the sketch – the system is far from criti-
cality, a gap opens at small frequencies (no phonons and no
non-phononic type-I modes are allowed in the low frequency
region). On the contrary, different numerical simulation stud-
ies indicate that in this condition the low-frequency part of
the spectrum shows an ω4 DOS. We have called these excita-
tions “non-phononic type-II modes”, and we have shown that
their origin can be explained via the generalized HET (see
text).

waves (“phonons”), as considered by Debye, exist,
and (ii) an intermediate regime, where the modes are
strongly scattered by the disordered structure. In this
strongly-scattering regime the intensity of the waves
obeys a diffusion equation akin to light in milky glass
[69]. This is why Allen et al. [68] call these excitations
“diffusons”.
It has been suggested [14, 22] that the states in this

region obey the statistics of random-matrix eigenstates.
In panel b) of Fig. 1 the reduced density of states,

g(ω)/ω2 is depicted for γ approaching its critical value
γc. The blue line represents, as in panel a), the case
γ ≪ γc. The violet, magenta and red lines correspond to
increasing disorder, approaching γ → γc. The BP onset
shifts to lower and lower frequencies, eventually reaching
zero frequency at γ = γc. In parallel, the random-matrix
type modes, here named “type-I non-phononic” modes,

cover more and more the low-frequency region.
Finally, in panel c) of Fig. 1 we present the case ob-

tained in numerical simulations of very small systems,
where a gap opens in the phonon spectrum. The gap edge
is located at the lowest resonance frequency ωo. This
frequency corresponds to the frequency of the transverse
phonons in the glass at a wavevector k = 2π/L, where L
is the box size, which gives ωo = 2πvT /L, where vT is the
transverse sound velocity. As sketched in the Figure, the
frequency ωo provides the upper limit for the visibility of
the type-II spectrum. At higher frequencies these modes
hybridize with the waves and probably can no more be
distinguished from them.
If the system is quenched from a high parental tem-

perature, i.e. the resulting inherent structure lies high in
the potential energy landscape, γ ≈ γc, the gap in the
phonon spectrum exists no more, i.e the non-phononic
type-I modes (random matrix eigenstates) extend to-
wards ω = 0. The low-frequency DOS in this case scales
as g(ω) ∼ ω2 like a d = 3 Debye spectrum (this case is
not sketched in the figure).
If, on the contrary (as reported in panel c of Fig. 1),

the quenching is performed starting from a well equili-
brated (supercooled) liquid configuration at low parental
temperature, the inherent structure reaches a low value
in the potential energy landscape, and the glass is far
from criticality. At low frequencies we have both a gap in
the phonon spectrum (because of the small system size)
and a gap in the non-phononic type-I modes (because
γ ≪ γc). Within this gap now emerge the otherwise not
visible non-phononic type-II modes.
It is worth to note that the non-phononic type-II modes

can be accessed in a very specific situation (small system
size) that can be reached only in numerical simulations.
As mentioned in the introduction, these modes have been
the subject of a large amount of work in the last years, al-
most all of them reporting a density of states g(ω) ∼ ωs

with s = 4. The GHET predicts that this s value de-
pends on the details of the potential. It turns out that
the value of s depends on the tapering function used to
smooth the potential around the cutoff in the molecular
dynamic simulations, such that the first mth derivatives
are continuous. For m = 2, which is almost always used
in numerical simulations, the prediction is s = 4, as ob-
served in the literature. More generally, s = 3 + 2/m.
As for a correct numerical determination of the Hessian
(and thus of the dynamics) m must be m ≥ 2, s cannot
be larger than 4. It can be reduced to its minimum value,
s = 3, if a C∞-function is used as tapering function.
There exists a large body of simulations with with a

potential, which quadratically becomes zero at a radius
rc (see Ref. [41] for references). Such potentials have
been used in jamming studies [70, 71]. The Hessian of
this potential is discontinuous at r = rc. The Hessian,
however, on which our analytical theory is based, and
from which the DOS is obtained by diagonalization, plays
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a pivotal role. Therefore we decide not to consider the
cases with m < 2, where some matrix elements of the
Hessian are discontinuous at the truncation point.
Finally, as pointed out above, in the case of a potential

with repulsive and attractive parts, which has a minimum
at the nearest-neighbour distance – like the Lennard-
Jones potential – the GHET predicts that the dominant
type-II spectrum scales with s = 5, in agreement with
recent simulations [54, 55].
The GHET, therefore, is in agreement with results pre-

viously reported in the literature. The universally ob-
served s = 4 is due to a specific choice of tapering made
in the numerical simulations, whereas s = 5 is generic for
potentials with a minimum.

Numerical Simulations

As the GHET gives us precise predictions on the value
of s for different tapering shapes, and links this value to
the (distribution of the) local stress tensor, we have per-
formed extensive numerical simulations of a model glass
to give strength to the theory. We performed the sim-
ulations with different tapering functions (specifically, a
C2 and a C∞ function), and measured both the stress
distributions and the non-phononic spectra. Both turn
out to be in agreement with GHET.
As a microscopic model of glass, we consider a poly-

disperse mixture of short-range repulsive particles [72].
The diameters ai, with i = 1, ..., N the particle’s label,
are drawn from a power law distribution P (a) with 〈a〉 ≡∫ amax

amin
daP (a)a = 1, with amin = 0.73, amax = 1.62, and

P (a) = Na−3, withN the proper normalization constant
[72–78]. Particles are arranged into a box of side L with
periodic boundary conditions. Indicating with r1, . . . , rN
a configuration of the system, the mechanical energy is

V (r1, . . . , rN ) =
1

2

∑

i 6=j

φ(rij) , (13)

with the pair potential φ(rij)

φ(rij) =

(
aij
rc

)n

ϕm(xij) (14)

ϕm(x) =
[
ϕ(x)− ϕ(1)

]
Tm(x)

ϕ(x) = x−n .

with xij = rij/rc, rij = |ri − rj | and rc is the cutoff dis-

tance. In writing (14) we have introduced aij ≡ ai+aj

2
and we indicate with Tm(x) the cutoff function (tapering
function) which is different from zero only in the inter-
val x ∈ [0, 1]. Tm(x) has the property that it varies as
(1− x)m for x→ 1. Consequently the potential goes to
zero for r → rc as

φ(rij) ∼ (rij − rc)
m+1 (15)

This guarantees that the first m derivatives of the poten-
tial vanish continuously at the cutoff rc. We specialize
our numerical study to the case m = 2 and m = ∞
adopting the following functions

T2(x) = (1− x2)2 , (16)

and

T∞(x) = exp

[
x

2(x− 1)

]
. (17)

The cutoff distance rc is chosen to be larger than the
largest particle’s diameter σmax = 1.62 (we set rc =
1.955).
The simulated systems are small enough to allow a

direct inspection of the non-phononic modes, be it Type-
I or Type-II. Actually, we measure the lowest phonon
resonance at ωo≈1.5, and modes are found down to a
frequency ten times smaller.
To check the character of these modes, i.e. whether

they are extended or localized, we use the fact that in
a disordered system eigenvalues cannot be degenerate,
which leads to level repulsion. In the theory of random
matrices [79] this phenomenon is investigated using the
statistics of the eigenvalue differences. For delocalized
states this statistics is governed by that of the Gaussian
Orthogonal Ensemble (GOE), for which the distribution
of small eigenvalue differences increases linearly, whereas
for localized states one expects a Poissonian (exponen-
tially decaying) distribution.
For evaluating the GOE spectral statistics we use the

method reported in [53] where the distribution of the
variable r (the ratio of two differences between adjacent
eigenvalues) is considered. The variable r is defined as
r = (λp+1 − λp)/(λp+2 − λp+1) (p = d − 1...[dN − 2]),
where λp are the eigenvalues ordered in ascending order.
Atas et al. [53] have shown that for the GOE case the

statistics is well obeyed by their surmise

P (r) =
27

8

r + r2

(1 + r + r2)5/2
. (18)

Fig. 2 shows the distribution P (r) for three different
frequency regions: lowest 50 eigenvalues (panel A), mid-
dle frequency range (B) and highest 50 eigenvalues of a
d=3 and N=1600 system. The distributions have been
averaged over 900 independent samples. The highest fre-
quency modes, as expected, are localized (the dotted line
is an exponential fit to the data), while both middle and
low frequency modes show their extended character: they
are very well represented by the Atas surmise, Eq. (18),
as demonstrated by the parameterless full line, which rep-
resents the data very well. It is interesting to note that
the level distance statistics is universal, i.e. does not de-
pend on the type of non-phononic excitations: type-I in
samples prepared from high T ∗ (blue symbols), type-II
in samples prepared from low T ∗ (red symbols).
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*

FIG. 4. Numerical results for the integrated DOS
F(ω) =

∫ ω

0
dω′g(ω′) of a ”small” (N=1000) system ob-

tained for a high (T ∗
≫ TD, panel A) and low (T ∗

≃ Td,
panel B) parental temperature, where Td is the temperature
of dynamical arrest. The full symbols report the ”usual”
tapering case (m=2), while the open ones correspond to
m = ∞, Eq. (17), introduced in this work, in order to test
the GHET. For high parental temperature (panel A) the
low-frequency slope of the DOS s = 2 for both tapering ver-
sions, corresponding to the marginal type-I spectrum, while
at low parental temperature (panel B) where a gap opens
in the type-I-mode spectrum, the DOS is due to the type-II
excitations, which exhibit an m dependent low-frequency
scaling: s = 4 for m = 2 and s = 3 for m = ∞.

If, on the contrary, the parental temperature T ∗ is low-
ered, and approaches Td, the system is far from marginal-
ity, a gap opens in the non-phononic type-I spectrum,
and the type-II modes now dominate the low-frequency
spectrum. This spectrum is predicted by GHET to be
affected by the way the potential is tapered. For better
transparency we collected the GHET predictions for dif-
ferent values of the tapering index m in Table I. Indeed,
as reported in the bottom panel (B), we observe a differ-
ent low-frequency behavior for the two different tapering
versions: for the m = 2 tapering s = 4 is reached at
low frequencies, and for the m = ∞ tapering s = 3, as
predicted by GHET for the DOS of the type-II modes.

In other words: The main result of Fig. 4 is the insen-
sitivity of the DOS on the tapering exponent m for high
parental temperature T ∗, as opposed to a sensitivity onm
for low T ∗. The observed low-frequency exponents com-

Quantity Scaling m = 1 m=2 m = ∞

P(σ) ∼ σ−1+ 1

m σ0 σ−
1

2 σ−1

ρεη(λ) ∼ λ1+ 1

m λ2 λ
3

2 λ1

gεη(ω) ∼ ω3+ 2

m ω5 ω4 ω3

Fεη(ω) ∼ ω4+ 2

m ω6 ω5 ω4

TABLE I. In this table we have collected the results for P(σ),
the level density ρ(λ), the DOS g(ω) and the integrated DOS
F(ω) =

∫ ω

0
dω′ g(ω′) for the case of a potential with cutoff

and tapering function of order m.

pare well with the predictions of HET and GHET: s = 2
for high T ∗, signifying type-I excitations at marginality,
and s = 4, 3 for low T ∗, corresponding to type-II ex-
citations, which depend on the stress distributions for
tapered potentials with m = 2,∞.

DISCUSSION

We have used the heterogeneous elasticity theory
(HET) and its generalization (GHET) in order to clar-
ify the behaviour of harmonic vibrational excitations in
disordered systems.
In the present study we clarify the interplay between

system stability (controlled by the disorder parameter
γ, i.e. the normalized variance of the elastic constant
heterogeneity) and the system size in determining the
DOS shape at low frequency.
As predicted by HET, in large macroscopic systems

(as real glasses are), the disorder parameter controls the
frequency position ωBP of the boson peak (BP), and ωBP

marks the frequency border between the phonon realm
at low frequency and that of the non-phononic type-I
excitations at ω > ωBP . If the disorder is increased,
i.e. the stability is decreased, the system approaches the
marginal state. Here the BP moves to zero frequency,
the phonons disappear, and the type-I modes dominate
the whole frequency region.
When the system size becomes small enough, a new

frequency scale enters into the game: the lowest phonon
resonance, ωo, which fixes the lower frequency boundary
of waves allowed by the system (ω > ωo). If the system is
marginally stable, or close to marginal stability, below ωo

the type-I excitations dominate the scene. Their DOS is
– like that of the phonons in d = 3 – proportional to ω2 in
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any dimension d, although with a different prefactor. If,
on the contrary, the glass is highly stable (γ ≪ γc) a gap
opens in the type-I non-phononic excitations spectrum:
the type-I excitations only exists for ω > ωc. It is in
these conditions (stable small glass) that the type II non-
phononic excitations can show up below both ωc and ωo.

In other words – if the overwhelming phonon
(Propagon) modes, whose DOS is g(ω) ≃ ωd−1, are
removed from the low-frequency realm by numerically
investigating small systems – in addition to the type-I
modes situated above the BP frequency – a new kind
of excitations emerges from the background. It is worth
to note that type-II non-phononic excitations are always
present, but they are hidden by the presence of waves or
by the presence of the type-I modes. When the waves
are “removed” (small systems) and the type-I modes are
removed as well (well equilibrated systems), the type-II
non-phononic modes become visible.
At this point we note that that the local stresses, which

give rise to the type-II modes involve a length scale of
a few interatomic distance, whereas the heterogeneous
elasticity, responsible for the type-I modes involves the
mesoscopic length scale of the coarse-graining procedure.
To investigate the difference of the two types of non-
phononic excitations in more detail is an interesting task
for future research. Similarly, it will be very interest-
ing to investigate, how the local stresses and the associ-
ated type-II modes enter into the vibrational spectrum of
macroscopic samples, and, in particular, how they may
influence the boson peak.
The depicted scenario for small samples allows to clar-

ify recent numerical findings, where a ωs DOS has been
observed, with s depending on the specific parental tem-
perature: s = 4 for minima deep in the potential energy
landscape (type-II modes in well equilibrated small sys-
tem), and s → 2 on increasing the potential energy of
the minimum (type-I modes in badly equilibrated small
system).
After having clarified the scenario of the excitations

existing in glasses, we have investigated the nature of
the type-II non-phononic ones. By performing a proper
continuum limit for the harmonic dynamics of the glass,
we found that in addition to the strain field considered
in heterogeneous-elasticity theory (HET), one has to take
the non-irrotational part of the atomic displacement pat-
tern into account. The dynamics of these local vortici-
ties are governed by the statistics of the local frozen-in
stresses. The local vorticities act as local oscillators, hy-
brizided with the waves and the type-I modes.
The generalization of HET (GHET) predicts that the

scaling of the DOS of type-II non-phononic modes at
low frequency is related to the distribution of the local
stresses. The low-frequency scaling of the type-II excita-
tions is predicted to be non-universal and related via the
stress distributions to the statistics of the interatomic
forces, giving a one-to-one relation between the poten-

tial statistics and the spectrum. These predictions are
verified in our soft-sphere simulation. Both GHET and
the simulation show that in simulations type-II modes
are governed by the type of the smooth cutoff (taper-
ing), employed in the simulations, i.e. they are not an
intrinsic glass property.
For potentials with a minimum near the first-nearest-

neighbor potential GHET predicts a scaling with s = 5,
which is instead a generic property of the system.
At the end we would like to emphasize that the present

theory, along with the previous numerical results, ob-
tained by diagonalizing the Hessian matrix (e.g. [38–
45]), is inherently harmonic. Anharmonic effects, which
certainly contribute to experimentally measured spec-
tra (e.g [4–9]) and spectra obtained by evaluating cor-
relation functions, using molecular-dynamics simulations
(e.g. [25–28]), are not taken into account. The har-
monic spectra pertain to zero temperature, while the an-
harmonic effects vanish in this limit. However, the ex-
perimentally measured non-phononic spectra in the THz
range (boson peak) are reportedly dominated by the har-
monic interaction [10, 68].

METHODS

M1 Heterogeneous elasticity theory

Here we review heterogeneous-elasticity theory
(HET)[19, 28, 34], which accounts for the type-I
nonphononic excitations.
Heterogeneous elasticity theory is just ordinary elas-

ticity theory with a spatially fluctuating shear modu-
lus G(R). The equations of motion for the displacement
fields u(R, t) are

ρmü
α(R, t) =

∑

β

∂

∂β

∑

γδ

Cαγδβ(R)εγδ(R, t) (20)

Within HET one discards the non-isotropic terms and
assumes that the bulk modulusK does not exhibit spatial
fluctuations [28, 34]. This gives

ρmü
α(R, t) = = K

∂

∂xα
Tr{ε(R, t)}+

∑

β

∂

∂xβ
2G(R)ε̂αβ(R, t)

(21)
where we have defined the traceless strain tensor

ε̂αβ(R, t)
.
= εαβ(R, t)− 1

3
Tr{ε(R, t)} (22)

Fourier-transformed into the frequency regime, Eq. (21)
takes the form

−ω2ρmu
α(R, t) = (23)

= K
∂

∂xα
Tr{ε(R, t)}+

∑

β

∂

∂xβ
2G(R)ε̂αβ(R, t)
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The stochastic Helmholtz equation (23) can be solved
with the help of a mean-field theory, the self-consistent
Born approximation [19, 20, 28, 34] (SCBA). The SCBA
arises as a saddle point within a replica-field theoretic
treatment. The solution amounts to replacing the true
medium with spatially fluctuating shear modulus G(r) =
G0 − ∆G(r) by a complex, frequency-dependent one
G(z) with z = ω2 + i0. The input is the mean value
G0 = 〈G(r)〉 and the variance 〈(∆G)2〉, and the output
is G(z) = G0 − Σ(z), where Σ(z) is the self energy.

The SCBA equations for Σ(z) are formulated in terms
of the longitudinal (L) and transverse (T ) Green’s func-
tions, which are given by

G(L,T )(k, z) =
1

−z + k2v2(L,T )(z)
(24)

As usual one has to add an infinitesimal positive imagi-
nary part to the spectral variable λ = ω2: z

.
= λ+i0. The

quantities vL(z), vT (z) are effective, complex, frequency-
dependent sound velocities, given by

v2
L
(z) =

1

ρm

[
K +

4

3

(
G0 − Σ(z)

)]
(25)

v2
T
(z) =

1

ρm

[
G0 − Σ(z)

)]
(26)

Here K the bulk modulus that we assume to be uniform
along the sample. This expression holds in d = 3, in
other spatial dimensions the factor 4/3 in the RHS of
Eq. (25) will be different. The quantity M = K+4/3Go

is the mean longitudinal modulus, thus we can define
M(z) = K + 4/3(Go − Σ(z)) as the generalised longitu-
dinal modulus. The self consistent HET-SCBA equation
for the self energy Σ(z) turns out to be [80]:

Σ(z) =

∫
d3k

(2π)3
C(k)k2

(
2

3
GL(k, z) + GT (k, z)

)
(27)

Here C(k) is the Fourier transform of the correlation
function function C(r)

C(r) =

〈
∆G(r0 + r)∆G(r0)

〉
= 〈(∆G)2〉f(r) (28)

of the fluctuations ∆G(r) = G(r) − 〈G〉 of the elastic
shear moduli. We assume that these correlations are
short-ranged, i.e. f(k=0) is supposed to be finite. Be-
cause the inverse correlation length ξ−1 acts effectively
as an ultraviolett cutoff, we schematically use

f(k) = f0θ(kξ − k) , (29)

where θ(x) is the Heaviside step function and kξ is in-
versely proportional to the correlation length. From the
condition

1 = f(r=0) =

∫
d3k

(2π)3
f(k) (30)

we obtain

f0 =
6π2

k3ξ
(31)

We now introduce dimensionless variables: q = k/kξ,

z̃ = z2ρm/G0k
2
ξ , Σ̃ = Σ/G0, K̃ = K/G0, M̃(z̃) = K̃ +

4
3 [1 − Σ̃(z̃)], G̃(L,T )(q, z̃) = G(L,T )(k, z). We also define
the dimensionless disorder parameter:

γ
.
=

1

G2
0

〈(∆G)2〉 . (32)

In terms of these quantities the self-consistent equation
(27) takes the form

Σ̃(z̃) = 3 γ

∫ 1

0

dq q4
(
2

3
G̃L(q, z̃) + G̃T (q, z̃)

)
(33)

= γ

(
2

3

1

M̃(z̃)

[
1 + z̃G̃L(z̃)

]
+

1

1− Σ̃(z̃)

[
1 + z̃G̃T (z̃)

])

with

G̃(L,T )(z̃)
.
= 3

∫ 1

0

dq q2 G̃(L,T )(q, z̃) (34)

The DOS gε(ω) and the level density ρε(z̃) are given by

gε(ω) = 2ωρε(z̃) =
2ω

3π
Im

{
G̃L(z) + 2G̃T (z)

}
. (35)

We introduced the subscript ε in order to distinguish
the HET-type-I spectra from those due to the type-II
excitations, which we call gεη(ω) and ρεη(λ).

We now multiply by the factor 1 − Σ̃(z̃) and define a
function B̃(z̃)

.
= 2

3 [1− Σ̃(z̃)]/M̃(z̃) and obtain

Σ̃(z̃) [1− Σ̃(z̃)] =

([
1 + B̃(z̃)

]
+ z̃G̃0(z̃)

))
(36)

with

G̃0(z̃)
.
= γ

(
G̃T (z̃) +B(z̃)G̃L(z̃)

)
(37)

Because B̃(z̃) depends only weakly on z̃, for small z̃ we
may set z̃ in this function equal to zero. This gives

Σ̃(z̃) [1− Σ̃(z̃)] =

(
γ
[
1 + B̃(0)

]
︸ ︷︷ ︸

γ̃

+z̃G̃0(z̃)

))
(38)

we may now solve this quadratic equation to obtain

Σ̃(z̃) = Σ̃c(0) +

√
γ̃c − γ̃ − z̃G̃0(z̃) (39)

with γ̃c = 1
4 and Σ̃c(0) = Σ̃(0)

∣∣
γ̃=γ̃c

= 1
2 . For γ̃ > γ̃c

obviously Σ(0) becomes imaginary, which introduces a
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finite DOS for z̃ ≤ 0, i.e. an instability. This insta-
bility is due to the presence of too many negative local
shear moduli, which in SCBA have been assumed to obey
Gaussian statistics.
In very small samples the integrals in Eqs. (27) and

(34) have to be replaced by discrete sums over wavevec-
tors k = (kx, ky, kz) with kα = 2πnα/L, nα ∈ Z. For
small frequencies the resonance conditions ω̃ = kv(L,T )(0)
in the denominator of the Green’s functions cannot be
met (the sample is too small for carrying long-wavelength
waves), and the Green’s functions G(L,T ), and hence G0

become real quantities. This, in turn leads to a gap in
the DOS for γ̃ < γ̃c:

ρε(λ̃)





= 0 for λ̃ < λ̃c

∼
√
λ̃− λ̃c for λ̃ ≥ λ̃c

(40)

with λ̃c = [γ̃c − γ̃]/G0(0). At marginal stability λ̃c = 0
this leads to ρ(λ̃) ∼ λ̃1/2 and consequently to a DOS
g(ω) ∼ ω2.
In macroscopically large, stable samples the gap is

filled by the Debye phonons. The onset of the imagi-
nary part of Σ̃(z) at λ̃c corresponds to the boson peak
[19, 20, 28, 34], and the states above λ̃c are irregular
random-matrix states.

M2. Derivation of Generalized
Heterogeneous-Elasticity Theory (GHET)

We confine our treatment to three dimensions; the gen-
eralization to two dimensions is straightforward.
We start with the harmonic expansion of the total en-

ergy

E = T + V (r1, . . . , rN )

= T + Vo −
∑

i

fi·ui +
1

2

∑

ij

ui·
↔

Hij ·uj (41)

Here ui are infinitesimal displacements from the equilib-
rium position ri, the fi are local forces, defined by

fαi = − ∂

∂rαi
V (r1, . . . , rN ) , (42)

and
↔

Hij is the Hessian matrix

Hαβ
ij =

∂

∂rαi

∂

∂rβj
V (r1, . . . , rN ) (43)

At equilibrium the local forces fi are zero, so we dis-
card them from the discussion. We now assume that
V (r1, . . . , rN ) can be represented as a sum over pairs
with a pair potential φ(r)

V (r1, . . . , rN ) =
∑

(i,j)

φ
(
rij

)
(44)

where
∑

(i,j) = 1
2

∑
i 6=j denotes a sum over pairs (i, j),

and rij = |rij | = |ri − rj |. We further assume that φ(r)
has a finite range rc.

In terms of the pair potential the Hessian
↔

Hij can be
represented by

Hαβ
ij = −Kαβ

ij

(
1− δij

)
+

(∑

ℓ 6=i

Kαβ
iℓ

)
δij (45)

with the force constants

Kαβ
ij =

[
φ′′(rij)−

1

rij
φ′(rij)

]
rαijr

β
ij

r2ij
+

1

rij
φ′(rij)δαβ

.
= φ(1)(rij) r

α
ijr

β
ij + φ(2)(rij) δαβ (46)

with implicit definition of the functions φ(1)(rij) and
φ(2)(rij).
With these definitions the harmonic part of the poten-

tial energy can be represented by

VH(r1, . . . , rN ) =
∑

(i,j)

Vij (47)

with

Vij =
1

2

∑

αβ

uαijK
αβ
ij u

β
ij (48)

=
1

2

(
φ(1)(rij)

∑

αβ

rαijr
β
iju

α
iju

β
ij + φ(2)(rij) u

2
ij

)

.
= V

(1)
ij + V

(2)
ij .

Here uαij = uαi − uαj .
We now go over to a continuum description by in-

troducing difference and center-of-mass variables rij =
ri − rj and Rij = 1

2

[
ri + rj

]
and interpreting Rij

.
= R

as the local vector of the continuum theory. We make a
Taylor expansion of u(ri) around R

u(ri) = u(R) +
(
[ri − R] · ∇

)
u(R)

= u(R) +
1

2

(
rij · ∇

)
u(R) (49)

It follows

1

2

[
u(ri) + u(rj)

]
= u(R) (50)

and

uα(ri)− uα(rj) =
∑

γ

rγijuα|γ(R) = uαij (51)

with abbreviation uα|γ
.
= ∂γu

α.
We now introduce symmetrized and antisymmetrized

spatial derivatives

εαγ(R) =
1

2

[
uγ|α(R) + uα|γ(R)

]

ηαγ(R) =
1

2

[
uγ|α(R)− uα|γ(R)

]
(52)
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or

uα|γ(R) = εαγ(R)− ηαγ(R) (53)

uγ|α(R) = εαγ(R) + ηαγ(R)

Here εαγ(R) are local strains and ηαγ(R) are local vor-
ticities. Because this tensor has only three independent
entries, one can define a vorticity vector

η(R) =
1

2

[
∇× u(R)

]
=



ηyz(R)

ηzx(R)

ηxy(R)


 (54)

We define now the symmetric part of the local (Born-
type) elastic constants as

Bαβγδ(R)
.
=

1

ΩZ
φ(1)(rij) r

α
ijr

β
ijr

γ
ijr

δ
ij

∣∣∣∣
R=Rij

(55)

and the stress tensor as

σγδ(R)
.
=

1

ΩZ
φ(2)(rij) r

γ
ijr

δ
ij

∣∣∣∣
R=Rij

(56)

Here 1/ΩZN(Z − 1)/2Ω is the average number of pairs
within the interaction range per volume, where Ω is the
total volume and Z is the average number of neighbors
within the interaction range.
With these definitions we can define a local potential

energy density as

V(R) = V(1)(R) + V(2)(R) (57)

with

V(1)(R)
.
=

1

ΩZ
V

(1)
ij

∣∣∣∣
R=Rij

(58)

=
1

2

∑

αβγδ

Bαβγδ(R)εαγ(R)εβδ(R)

V(2)(R)
.
=

1

ΩZ
V

(2)
ij (R)

∣∣∣∣
R=Rij

(59)

=
1

2

∑

αγδ

σγδ(R)uα|γ(R)uα|δ(R)

As noted by Alexander [59, 66], the term V(2) violates
local rotation invariance. Therefore in the literature [57,
65] a symmetrization procedure has been applied to this
term and the symmetrized non-irrotational term is then
incorporated into the symmetric potential energy density,

that we define Ṽ(1)
ij , in the following way:

Ṽ(1)(R)
.
=

1

2

∑

αβγδ

Cαβγδ
ij (R)εαγ(R)εβδ(R) (60)

with

Cαβγδ
ij

.
= Bαβγδ

ij +
1

4

(
σγδδαβ + σαδδγβ + σγβδαδ + σαβδγδ

)

.
= Bαβγδ

ij + Sy{σγδδαβ} (61)

Here we omitted the arguments (R) for brevity, which we
do from now on. The remaining part of the irrotational
term is then [81]

Ṽ(2) .
=

1

2

∑

αγδ

σγδηαγ
(
ηαδ − εαδ

)

.
= Ṽ(2)

ηη + Ṽ(2)
ηε (62)

In terms of the vorticity vector defined in Eq. (54) the
two non-irrotational parts of the potential-energy density
take the form

Ṽ(2)
[ηη]ij =

1

2

(
Tr{σij}η2 −

∑

γµ

σγδ
ij η

γηδ
)

(63)

Ṽ(2)
[ηε]ij =

1

2
τ · η (64)

with the coupling vector

τ =




∑
γ

(
σyγεγz − εyγσγz

)
∑

γ

(
σzγεγx − εzγσγx

)
∑

γ

(
σxγεγy − εxγσγy

)


 (65)

It is now obvious that the vorticity field η(R) is ex-

clusively associated with the local stresses
↔
σ . Because

these stresses are spatially bounded defects in the glass
[59, 82], we now give them the “defect label” ℓ, and call
the associated vorticity fields ηℓ(R). We also treat local
stresses as traceless [81], and their sign to be independent
of the sign of the potential derivative φ′(r). The latter
property is due to the external pressure exerted to the
system by the boundary condition [81].
The Lagrangian density in terms of the two vector vari-

ables u(R, t) and ηℓ(R, t) is given by (see details of the
derivation in [81]

L
GHET

= L
HET

+∆L
GHET

(66)

with

L
HET

=
ρ

2
[u̇(R)]2 − V(1) (67)

where ρ is the mass density, and

∆L
GHET

=
∑

ℓ

(
T[η]ℓ − V[ηη]ℓ − V[εη]ℓ

)
(68)

with the kinetic-energy density of the vorticities

T[η]ℓ =
1

2
ζ
(
ηℓ

)2
, (69)

and the additional terms of the potential-energy density

V̂[ηη]ℓ =
∑

αγδ

σγδ
ℓ ηαγℓ ηαδℓ

=
1

2

(
Tr{σℓ}︸ ︷︷ ︸

=0

η2 −
∑

γδ

σγδ
ℓ ηγηδ

)
(70)
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and

Ṽ[εη]ℓ =
∑

αγδ

σγδ
ℓ ηαγℓ εαδ =

1

2
τℓ · ηℓ (71)

with the coupling vector τℓ defined in Eq. (65).
In the following it will be of use to write the compo-

nents of this vector as linear combination of the strain
components

τνℓ =
∑

αβ

t
(ν),αβ
ℓ εαβ (72)

with

t
(ν),αβ
ℓ =

∂

∂εαβ
τ ν
ℓ (73)

The coefficients t
(ν),αβ
ℓ are just combinations of local

stresses. They are listed explicitly in Table II.
The equation of motion (in frequency space with z =

ω2 + iε), for u(R, z) is

−ρmz uα(R, z) =
∑

β

∂

∂xβ

(∑

γδ

Cαγδβ(R)εγδ(R, z)

+
∑

ν

∑

ℓ

s
(ν),αβ
ℓ ηνℓ (R, z)

)
(74)

with

s
(ν),αβ
ℓ =

1

2





t
(ν),αα
ℓ α = β

1

2
t
(ν),αβ
ℓ α 6= β

(75)

For η(R, z) we have

−ζz ηνℓ (R, z) =
∑

µ

σνµ
ℓ ηµℓ (R, z)− τµℓ (R, z) (76)

Defining the non-coupled Green matrix of η(R, z) as

[
Gℓ(z)

−1]νµ
= σνµ + ζzδνµ , (77)

we can solve for ηνℓ :

ηνℓ (R, z) =
∑

µ

G
νµ
ℓ (z)τνℓ (R, z)

=
∑

µ

G
νµ
ℓ (z)

∑

γδ

t
(ν),γδ
ℓ εγδ (78)

Inserting Eq. (78) into (74) we obtain

−ρmz uα(R, z) (79)

=
∑

β

∂

∂xβ

∑

γδ

(
Cαγδβ(R) + ∆Cαγδβ(z)

)
εγδ(R, z) ,

t(x),xx = 0 t(y),xx = −σxz t(z),xx = σxy

t(x),yy = σyz t(y),yy = 0 t(z),yy = −σxy

t(x),zz = −σyz t(y),zz = σxz t(z),zz = 0

t(x),yz = σyy
− σzz t(y),yz = −σxy t(z),yz = −σxz

t(x),xz = −σxy t(y),xz = σxx
− σzz t(z),xz = −σyz

t(x),xy = σxz t(y),xy = −σyz t(z),xy = σyy
− σxx

TABLE II. List of the stress contributions t
(ν),αβ

ℓ . For brevity
we omitted the subscript ℓ labelling the local regions.

where the additional contributions to the elastic coeffi-
cients are given by

∆Cαγδβ(z) =
∑

νµ

∑

ℓ

s
(ν),αβ
ℓ G

νµ
ℓ (z) t

(µ)γδ
ℓ (80)

We now simplify the treatment as follows:
Because all patches around a local stress σℓ involve

a vorticity pattern, which is just described by a single

variable, namely η
(z̃)
ℓ ≡ ηℓ, where z̃ indicates the z axis

of the local coordinate system pointing into the direction
of ηℓ, we work in terms of scalar variables ηℓ with a
Green’s function

Gℓ(z) =
1

ζz − σℓ
(81)

where σℓ is now any of the local stress components. Be-
cause the stress-induced correction to the elastic coeffi-
cients, given by Eq. (80) is just a quadratic form of the
local stresses with the local Green’s functions as coeffi-
cients we define – in the spirit of the isotropic approxima-
tion of the HET, Eq. (21) – the additional contribution
to the frequency-dependent elastic self energy as

∆Cαγδβ(z) → Σεη(z)

(
δαγδδβ + δαδδγβ

)
(82)

with

Σεη(z) =
∑

ℓ

σ2
ℓGℓ(z) (83)
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where σℓ is, again, any matrix element of the lo-
cal stresses. The simplified version of the generalized
heterogenous-elasticity (GHET) is now obtained by re-
placing

Σ(z) → Σ
HET

(z) + Σǫη(z)

The contribution to the shear-modulus self energy
takes the form

Σεη(z) ∼
σ2
ℓ

−zζ + σℓ
=

∫
dσP(σ)

σ2

−zζ + σ
(84)

The overbar indicates the average over the local stresses
and P(σ) is their distribution density.
The corresponding contribution to the spectrum ρǫη(λ)

is given by

ρεη(λ) ∼ Σ′′
εη(λ) ∼ σ2P(σ)

∣∣
σ=λζ

(85)

M3 Evaluation of P(σ)

In this appendix we discuss the general properties of
the distribution of the local stress and what is expected
for the low stress value behaviour of this distribution.

Basic

We are dealing with the local stress:

σαβ
ij

.
= rαijr

β
ij

φ′(rij)

rij
(86)

or, by introducing the unit vector ê
.
= r/|r|

σαβ
ij = êαij ê

β
ij rijφ

′(rij) (87)

For sake of simplicity, let’s omit the subscript ij and
define ψ(r) = rφ′(r):

σαβ = êαêβ ψ(r) (88)

As discussed in paragraph M2, we are interested in the
traceless stress tensor:

σ̃αβ = (êαêβ − 1

d
δαβ) ψ(r) (89)

The angular and radial part of the stress for a given
couple of particle enter multiplicatively. Given the cylin-
drical symmetry of the problem (the angular part only
depends on the orientation of the axis defined by the two
particles) we expect that the angular part plays no role in
the distribution if the system is isotropic. Indeed, we can
make a rotation of the matrix Mαβ = êαêβ so to orient
the vector ê along the first coordinate. Being the matrix
Mαβ dyadic, its eigenvalues are all zero but one, which

value is equal to one, and the corresponding eigenvector
is parallel to ê. After rotation, the stress matrix in any
dimension is thus:

σ =




1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



ψ(r)

and its traceless countepart:

σ̃ =




d−1
d 0 · · · 0

0 − 1
d · · · 0

...
...

. . .
...

0 0 · · · − 1
d



ψ(r)

As expected, the angular part is deterministic, and the
distribution of the stress is controlled by the distribution
of ψ(r). The sign of the elements of the matrix σ̃ however
can be both positive and negative. As for the inverse law
potential investigated here ψ(r) is always negative, the
traceless stress matrix has d− 1 positive and 1 negative
elements. As discussed, only positive stress values give
rise to non-phononic type II modes. Importantly, in any
dimension, positive stress values do exist.

Stress distribution

The quantity that defines, for each couple of particles,
the absolute value of the stress is |ψ(r)|. As it represents
the value of the stress, let’s call it ”σ” (a scalar, not to
be confused with the stress tensor). That is

σ
.
= |ψ(r)| = |rφ′(r)| (90)

Let’s now search for the distribution of σ, let’s say P(σ).

The distribution of the rij value is governed by the
particle pair distribution function g(r). Specifically in
dimension d = 2:

P (r) = 2πρr2g(r) (91)

(where ρ = N/Ω is the particle density) and in d = 3:

P (r) = 4πρr2g(r) (92)

and, using

P(σ)|dσ| = P (r)|dr| (93)

we get

P(σ) =∼ rd−1g(r)
∣∣∣dσ
dr

∣∣∣
−1

(94)
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The case of a smooth (tapered) cutoff

In real numerical studies, the interaction potential is
“shifted” and “tapered” in such a way to be zero at a
finite r value (at the cut-off value rc) and to have con-
tinuity up to its m-th derivative at rc. Its expression
becomes:

φ(r) = a
(
r−n − r−n

c

)
(r2c − r2)m r < rc (95)

φ(r) ∼ (rc − r)m+1 r
≈
< rc

φ(r) = 0 r > rc

The value of m is (almost) always chosen to be m = 2,
as the continuity of the first derivative of the potential
(the force) is needed for the correct energy conservation
during the dynamics, and the continuity of the second
derivative guarantees a good estimation of the Hessian.
By defining x = r/rc we can rewrite the previous equa-

tion as:

φ(x) = a′
(
x−n − 1

)
(1− x2)m x < 1 (96)

φ(x) = 0 x > 1

Obviously σ=|rφ′(r)|=|xφ′(x)|.
Being interested in the r-region where the stress is

small, we have now to consider the region around r≈rc,
i.e. x≈1. In this case, it’s worth to define ǫ = 1−x2 and
to expand the potential around ǫ=0 (ǫ > 0 hereafter):

φ(ǫ) = a′
(
(1− ǫ)−n/2 − 1

)
ǫm ∼ ǫm+1 (97)

Now, rembering we are in the limit of small ǫ:

σ = |x2φ′(x)| = (1− ǫ)
∣∣∣dφ(ǫ)
dx

∣∣∣ ∼
∣∣∣dǫ

m+1

dx

∣∣∣ =

=
dǫm+1

dǫ

∣∣∣ dε
dx

∣∣∣ ∼ ǫm
∣∣∣ dǫ
dx

∣∣∣ = ǫm
∣∣∣d(1− x2)

dx

∣∣∣ =
= ǫmx ∼ ǫm (98)

Thus

σ = ǫm (99)

and

ǫ = σ
1

m (100)

Now

dσ

dr
=
dσ

dǫ

dǫ

dr
∼ ǫm−1(−r) ≈ ǫm−1(−rc) (101)

thus
∣∣∣dσ
dr

∣∣∣ ∼ ǫm−1 ∼ σ
m−1

m (102)

Finally, using Eq. (94), we have

P(σ) ∼ rd−1
c g

2
(rc)σ

1−m
m (103)

We observe that the behaviour of P(σ) for σ → 0, does
not depend on n. Rather it only depends on the value of
m: it is the presence of a cut-off, and the continuity of
φ(r) and of its first m derivatives at the cut-off position
that determine the stress distribution. Further, we ob-
serve that for m=2 we have P(σ) ∼ σ− 1

2 , which, in turn,
as we will see in the next paragraphs, implies ρ(ω) ∼ ω4.

The case of a potential with a minimum

If an interatomic potential φ(r) has a minimum, say, at
r = r0 like in the case of a Lennard-Jones (LJ) potential,
then the first derivative passes linearly through zero at
r = r0. Obviously, this corresponds to the case of a
tapered potential with m = 1 Correspondingly we have

P(σ) ∼ rd−1
0 g

2
(r0)σ

0 = const. (104)

It is plausible that the overall distribution of the small
stresses is dominated by this contribution because g

2
(r)

is maximal at r0.

From P(σ) to g(ω)

As discussed in the main text and in M2, there are a
direct and an indirect contributions of the type-II excita-
tions to the spectrum, ρη(λ and ρεη(λ), given by (λ = ω2)

ρεη(λ) =
1

2ω
g(ω) ∼ σ2P (σ)

∣∣
σ=λζ

(105)

From this, we obtain the following relations for the spec-
tra

Potential with cutoff and tapering

ρεη(λ) ∼ λ
1

m
+1

gεη(ω) ∼ ω
2

m
+3 (106)

Potential with minimum at r = r0

ρεη(λ) ∼ λ2

gεη(ω) ∼ ω5 (107)

M4 Simulation details

We performed numerical simulations using the MC-
swap algorithm of a d-dimensional (d=3 here) system
composed of N = 10d particles in a box (with periodic
boundary conditions) of side L = N1/d so that the num-
ber density is ρ = N/Ld = 1.

To find the inherent glass structures, we consider
Monte Carlo (MC) dynamics combined with swap moves
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for equilibrating the system in a wide range of tempera-
tures. We compute stable glass configurations from dif-
ferent parent temperatures by minimizing the configura-
tional energy Φ and thus obtaining the corresponding in-
herent structures through the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithm [83]. The
spectrum of the harmonic oscillations around the inher-
ent configurations has been obtained by computing all
the dN eigenvalues of the hessian matrix using Python
NumPy linear algebra functions [84]. We produced data
for two tapering functions m = 2 and m = ∞. The
potential is given in Eq. (14) of the main text.

Following early works on MC-swap [72, 73], at each
MC step we perform a swap move instead of a standard
MC step with probability pswap = 0.2. The displace-
ment vector ∆r of the standard MC move has modulus
|∆r| = 0.2 so that the acceptance probability falls into
the interval 30% (low temperature) to 60% at high tem-
peratures. We consider runs of Nt = 1.1×106 MC steps.
The power of the repulsive potential is n = 12.
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